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A set of self-similar solutions for blast waves associated with the deposition of variable 
energy at the front is presented. As a consequence of self-similarity, the results are 
applicable when the ambient atmosphere into which the wave front propagates is a t  a 
negligibly low pressure and temperature. Besides the class of (1) blast waves associated 
with energy gain that covers a regime bounded on one side by the well-known solution 
for adiabatic strong explosion waves (ASE) and, on the other side, by the solution for 
waves having the Chapman-Jouguet condition established immediately behind the 
front, included within the scope of our analysis are two others: ( 2 )  blast waves 
associated with energy loss that occupy a regime between the ASE solution and the 
case of infinite density ratio across the front, and (3) a non-unique class of solutions 
for blast waves associated with energy deposition that may have either locally sonic 
or supersonic flow immediately behind the front, extending over the regime between 
the waves headed by the Chapman-Jouguet detonation and the case of infinite rate 
of energy deposition. Specific results for a number of representative cases are expressed 
in terms of integral curves on the phase plane of reduced blast wave co-ordinates, as 
well as in the form of particle velocity, temperature, density, and pressure profiles 
across the flow field. 

1. Background 
The theory of strong explosion waves is founded upon the studies of Sedov (1945, 

1946), Taylor (1950a, b )  and von Neumann (1963). To begin with, they were con- 
cerned primarily with blast waves of constant energy, i.e. cases where, except for the 
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initiation, no energy is deposited or withdrawn from the blast wave in the course of 
its propagation. The fronts of such waves are inert shocks. 

This was enhanced by interest in blast waves headed by detonations, as exhibited 
by the writings of Zel’dovich (1942; see also Zel’dovich & Kompaneets 1955), Taylor 
(1950b) and Sedov (1957). Here additional energy is deposited in the blast wave as a 
consequence of the growth of the front surface across which a finite amount of energy 
per unit mass is released by an exothermic process. At first this energy was considered 
to be constant, resulting in a uniform front propagation speed. Later it was realized 
that the amount of energy deposited at  the front may, in such cases, vary, say due to 
radiation losses, leading to the concept of blast waves headed by Chapman-Jouguet 
detonations of variable velocity of propagation. The condition of self-similarity 
imposes then a strict rule on the variation of the front-propagation speed, as first 
noted by Sapunkov (1967) and by Barenblatt & Sivashinsky (197O), brought up by 
Barenblatt & Zel’dovich (1971, 1972) and independently investigated by Oppenheim, 
Kuhl & Kamel (1972). Salient features of the fundamental background for these 
studies have been described in the text of Zel’dovich & Raizer (1966). 

At the same time concern over blast waves associated with variable energy de- 
position a t  the front was spearheaded by interest in explosions produced by laser 
irradiation. The postulate that energy is deposited in such waves at a constant rate 
was considered to be physically realistic, and self-similar solutions derived inde- 
pendently by Champetier, Couairon & Vendenboomgaerde (1968), Freeman (1968), 
Wilson and Turcotte (1970) and Dabora (1972) proved to be, for all practical purposes, 
sufficiently accurate. A general treatment of such waves has been given by Raizer 
(1974), while some representative cases have been included in the parametric study 
of self-similar blast waves carried out by Oppenheim, Kuhl, Lundstrom & Kamel 
(1972). 

With this as a background, it became of interest to carry out a comprehensive 
parametric study of self-similar solutions for blast waves for which variable energy 
is deposited at the front. The results of this study are reported here. 

With respect to the physical significance of the subject of our studies, the following 
is worth noting. The family of solutions we expose bears a fundamental difference 
from the classical case of an adiabatic point explosion - the self-similar blast wave 
resulting from an instantaneous deposition of energy a t  a point. (The latter, inciden- 
tally, belongs to the family, occupying in fact a central position as the line of 
demarcation between blast waves driven by the deposition of energy and those 
associated with its withdrawal.) Whereas the self-similar solution for an adiabatic 
blast wave pertains to the initial stages of the flow field that later becomes non-self- 
similar, just the opposite holds true for all the other particular solutions of the family. 
The physical reason for this is that blast waves driven a t  the front have to be started 
by the deposition of energy over a finite element of space rather than a t  a point. As 
a consequence of the space dimension associated with this feature, such waves are 
essentially non-self-similar. However, as demonstrated by the results of numerical 
analysis (viz. Barenblatt 1978), as the time progresses the solutions become self- 
similar. Thus, in contrast to the classical case of an adiabatic point explosion, where 
the self-similar solution applies a t  early times, the self-similar solutions for blast 
waves driven a t  the front represent the asymptotic limit of initially non-self-similar 
flow fields attainable a t  late times. 
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2. Analysis 
Physical space 

Let r and t be, respectively, the physical space and time co-ordinates, p be the local 
pressure, p the density, and u the particle velocity. Consider the medium to  behave 
essentially as a perfect gas with a constant specific-heat ratio, y. Then, at any instant 
of time, the energy deposited in the blast wave per unit area in the plane-symmetrical 
case (j = 0 ) ,  per unit polar angle and axial length in the line-symmetrical case ( j  = l) ,  
and per unit steric angle in the point-symmetrical case (j = 2), is 

where the subscript n denotes the front. 
Postulate, as required for the sake of self-similarity, the existence of the invariant 

front-velocity index dlnr,, t P=-- - -w, 
dlnt  r ,  

where w is the front velocity, and introduce the wave-power index 

where 9’ is the power of the wave, that is the rate a t  which energy is deposited in the 
wave. 

Since the dimension of E ,  as defined above, is [MLjT-2], one is led by dimensional 
considerations to the relationship 

where Sj = 27~j + (j - 1 )  (j - 2), J is a non-dimensional factor whose value depends on 
the energy distribution within the wave, while subscript a refers to conditions of the 
ambient atmosphere. 

By matching the dimensions of time in (4), one gets the following linear dependence 
between the two invariants 

while, with the aid of (2), (4) yields 
6 = (j+ 3 ) p  - 2, ( 5 )  

It is one of the ultimate objectives of the analysis to evaluate the relationship 
between J and t‘ over the whole scope of self-similar solutions for point explosions of 
variable energy. 

Phase space 

As it is well known (see, for example, Guderley 1942; Courant & Friedrichs 1948; 
Sedov 1957; Zel’dovich & Raizer 1966)) the solution of a self-similar problem can be 
reduced to the task of determining an integral curve on an appropriate phase plane. 
Particularly convenient as co-ordinates of such a plane are the following reduced 
variables : 
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where a is the local velocity of sound. 

Kuhl, Lundstrom & Kamel 1973): 
The governing equation can be expressed then simply as follows (Oppenheim, 

dZ Z P ( F , Z )  
(EF = Q(F,  2) ’ (9) 

where, for blast waves devoid of internal energy sources, 

Zp -1 

( j + l ) ( y - l ) + Z ’  
F E =  

Once the integral curve for a given problem is determined, the location in the flow 
field of a given state, specified in terms of F and 2, can be evaluated by the quadrature 
of either of the two following relations 

or 

dlnx D ( F . 2 )  

d lnz  1 - F  D(F,  2) 
dZ Z P ( F , Z ) ’  

-=-- 

The velocity and temperature profiles are determined then directly from the de- 
finitions of F and 2, (7)  and (8 ) ,  namely 

and 

u F  _ -  --x 
U n  4, 

where subscript n denotes the state immediately behind the front. Finally, the density 
and pressure profiles can be obtained from the so-called adiabatic integral (Sedov 1957, 
Oppenheim, Kuhl, Lundstrom & Kamel 1972), yielding 

while 

where 
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so that R, = p,/p,, and 

P PS- 
P,, 

so that P,, = p , /p , .  
Front 

I n  order to satisfy the condition of self-similarity, the state immediately behind the 
front must be represented by a point on the locus of infinite pressure ratios (or tem- 
perature ratios) across the front, the p,, = 00 line. I n  terms of the phase plane co- 
ordinates its equation is (Oppenheim, Kuhl, Lundstrom & Kame1 1972) 

845 

(23) 

2, = y ( l - F n ) F n .  (24) 

A point on the integral curve is related directly to  the density ratio across the front 
since, from the definition of F ,  (7), and the continuity equation for the front, it 
follows that 

F, = 1-R,'. (25)  

At the same time the magnitude of the reduced variable specifies the amount of 
energy deposited a t  the front per unit mass, q,  since from the energy equation for the 
front, combined with (24), 

where P (yn-  ')/(Y,, + 1) .  (27) 

while FA = 1-p. (28) 

The relationship prescribed by (26) is displayed in figure 1 for different values of 
yn . From the above it is readily evident that for F, < FA the change of state across the 
front is associated with energy deposition, while for F, > FA, with energy withdrawal. 
The co-ordinate F,, corresponds to the adiabatic strong explosion solution, for which 
w = 0,  while the maximum value of w is obtained for the Chapman-Jouguet condition 
for which Fn = 3 = +(l -p )  = (y, + 1)-l. Locus of points satisfying this condition is 
delineated in figure 1 by a chain-dotted line. 

The magnitude of Fn specifies also the temperature immediately behind the front, 
since from the definition of 2, (8) ,  and the equation for the Pn = 00 line, (24), one has 

where 9 is the gas constant per unit mass. The above relation is represented by a 
broken line in figure 1. It is of interest to note that, as a rule, 7 reaches maximum a t  a 
higher value of F,, than that corresponding to  the Chapman-Jouguet condition. 

Now, the energy contained in the flow field of the wave as a consequence of that  
deposited per unit mass a t  its front 
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FIGURE 1. Non-dimensional parameters for energy deposited at the front w q/w2, and 
temperature immediately behind it, 7 3 WTlwa, as unique functions of its reduced co-ordinate, 
I", . 

can be expressed in non-dimensional form, according to (6), as follows: 

It should be noted that in the derivation shown above advantage has been taken of 
the fact that, as a consequence of the definition of p, (2), w aprl--p-'. Finally, by 
virtue of ( 5 ) ,  taking into account the definition of (26), one gets 

Solution 

Each integral curve is associated with a saddle-point singularity, D, corresponding to 
conditions at the centre of the wave. Its position on the phase plane is specified by 
FD given by (14), while 2, = m. The slope of the integral curve at D is evaluated by 
expressing (9) in terms of 2-1 and applying the 1'Hospital rule. This yields 

With proper care taken of singularity D and of the limits of extrema expressed by 
the conditions P(F, 2) = 0 and Q(P, 2) = 0, the integration of the governing equation 
(9) can be carried out by a conventional (say Runge-Kutta) numerical technique. 
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For the starting step in the vicinity of singularity D, (33) is used. At the same time, 
the relationship between the points of an integral curve and the space co-ordinate x is 
established by quadrature of either (16) or (17)  depending whether dFldZ is larger or 
smaller than unity. As a consequence of the form of these equations, one has to assign 
a t  first in the vicinity of D an arbitrary initial value for x. This is then adjusted so that 
x = 1 a t  the intersection of the integral curve with the P, = 00 line. As the integral 
curves are evaluated, space profiles of the gasdynamic parameters are determined by 
the use of (18), (19), (20) and (21). 

Finally the non-dimensional energy integral, appearing as the energy distribution 
factor in (4), is calculated according to.the following expression obtained from (l), 

The integration is performed, of course, along a fixed integral curve. Since each integral 
curve is associated with a particular value of p and hence, by virtue of ( 5 ) ,  a specific 
value of 6, this yields a direct relationship between J and 6. 

The accuracy of the results are checked in two ways. First by the condition imposed 
by the global mass conservation principle, namely 

Jol R(F,  2) xjdx = (j + l)-l. (35) 

Secondly, this can be done by invoking the energy conservation principle, according to 
which the result of (34) has to be in agreement with that of (32), the values of F, 
appearing in the latter having been obtained from the intersection of the integral 
curve with the P, = cc line. The results of this check are described in the next section. 

3. Results 
Integral curves for the spherical case of j = 2 and a perfect gas with y = 1.4, 

corresponding to a representative set of values of the power index, c, or the velocity 
index, p, are depicted in figure 2. Shown there also is the sonic line D ( F ,  2) = 0 
according to ( I Z ) ,  and the locus of states immediately behind the front, the P, = oc) 

line given by (24). Moreover, represented by broken lines are loci of constant x 
obtained by interpolation of the values of this parameter as it was determined in the 
course of numerical integration. 

The pivotal line in the set is that for c = 0, the well-known solution for an adiabatic 
strong explosion. On the left of it are solutions for point explosions associated with 
energy deposition a t  various rates, up to the limiting case of infinite power. On the 
right are solutions for blast waves associated with energy withdrawal. They are 
terminated by the line F = 1, corresponding to the extreme case of infinite density 
ratio across the front. This imposes a lower bound upon the velocity index, p, and, 
by virtue of ( 5 ) ,  the power index, 6, that follows directly from the condition 
F, = FD = 1 ,  which, according to (14), yields p = 2/[(j+ l ) y +  21. The numerical 
values of this bound for the case of y = 1.4 are indicated on top of figure 2. 

As they appear in figure 2, starting from the integral curve for 6 = cJ = 1.6 (or 
p = pJ = 0.72), all the rest (i.e. those for 6 > e J )  pass through the point of intersection 
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FIGURE 2. Representative integral curves on the phase plane ( j  = 2, y = 1.4). 

between the locus of Pn = co and the D = 0 line, representing the Chapman-Jouguet 
condition. However, these solutions are not unique;t for the same value of the 
velocity index, ,LA, as well as the power index, e, one has a whole family of solutions, 
the members of which correspond to any vaIue of F, within the range 0 < F, < (F,)=, 
where, for our case o f j  = 2 and y = 1.4, (Fn)J = 0.416667. By virtue of (26), this, in 
turn, corresponds to any value of o within the range 0 < w < w J ,  where, for j  = 2 and 
y = 1.4, wJ = 0.520833. Displayed in figure 3 are six solutions within each of four 
families for which, respectively, e = 2-3, 3, 8 and co (or p = 0.86, 1 ,  2, and co). The six 
are in all cases made up of those corresponding to 

or 

Fn = 0.416667, 0.3, 0.2, 0.1, 0.01, 0, 

w = 0.520833, 0.48, 0.38, 0.22, 0.0247, 0. 

It should be observed that the terminal case of Fn = o = 0 corresponds to infinite 
front velocity, since, in view of the finite rate of energy deposition in the various families 
for eJ < e < a, the rate of energy deposition is finite and consequently q + 0. 

For all these cases the flow immediately behind the front is locally supersonic with 
respect to it. At any point in the flow field the flow is considered to be locally supersonic 
or subsonic depending on whether the relative particle velocity with respect to that 
of the locus of constant x, i.e. (ar/at), ,  is larger or smaller than the local velocity of 
sound. In  general, for all the points on the D = 0 line the flow is in this sense locally 
sonic, below it is supersonic while above subsonic. Thus, for all the solutions displayed 
in figure 3, the flow behind the front is locally supersonic until, at the state represented 

t &4 property pointed out by Barenblatt & Sivashinsky (1970). 
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FIGURE 3. Representative integral curves on the phase plane for non-unique 
solutions ( j  = 2 ,  y = 1.4). 

by the point on the D = 0 line, it becomes sonic. Beyond this point, the integral curve 
for all the family is the axis between singularities A and D corresponding to states a t  
which the flow is locally subsonic. 

For E < 3 (or p < l ) ,  the front is decelerating, a t  6 = 3 (or p = I ) ,  i t  propagates a t  
constant speed while, for e > 3 (or p > I) ,  i t  is accelerating. For the latter, the soh -  
tions display another interesting feature due to the fact that, in this domain, the 
locus of the points of maximum 2, the P = 0 line, having intersected the D = 0 line 
a t  the point F = 0, Z = 1, lies above it. The consequences of this fact are depicted in 
figure 4 showing, in a much enlarged scale, the integral curve corresponding to the case 
of e = ,u = co and F,, = 0-1 (o = 0.0247). The curve has two points on the D = 0 line, 
neither of which has a physical meaning. The physically meaningful parts are shown 
by continuous lines. They terminate a t  two conjugate points satisfying the Rankine- 
Hugoniot condition, excluding the parts represented by broken lines. Thus all the 
blast uwves associated with accelerating fronts have an internal discontinuity. 

I n  general this discontinuity corresponds to an extremely weak shock, the Mach 
number in the relatively extreme, in this respect, case of figure 4 being just 

1 + 3.8 x 10-5. 

Nonetheless, as a consequence of the relative position of the P = 0 and D = 0 lines 
pointed out above, it must exist in all blast waves with accelerating fronts. 

I n  order to describe the evplution of the flow field for the various cases in more 
detail, provided here in figures 5-9 are representative space profiles of gasdynamic 
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FIQURE 4. Close-up of the discontinuous change of state mound the sonic locus of 9 = 0 in the 
case of B = p = co and F,, = 0.1 or w = 0.22 ( j  = 2, y = 1.4). 

parameters, namely the particle velocity, uIu,, temperature, TIT,, density, plp,, 
and pressure, p fpn .  Figure 5 displays these profiles for all the unique solutions rep- 
resent& in figure 2. They start with those associated with the Chapman-Jouguet 
condition established immediately behind the front and terminate with that COP- 
responding to infinite density ratio across it. In the latter case all the mass is actually 
concentrated at  the front since, as i t  becomes apparent from figure 5 ( c ) ,  the density, 
after attaining infinity behind the front, goes down to zero immediately thereafter. 

Space profiles depicted in figures 6-9 correspond to each of the families displayed 
in figure 3, that is, respectively, to E = 2.3, 3, 8, and co (or ,u = 0-86, 1,  2, and 00). The 
various members of each family correspond, as in figure 3, to different values of F, or 
w ,  from those associated with the Chapman-Jouguet condition immediately behind 
the front to the limiting case of F, = w = 0.  Here the whole flow field collapses to a 
point. Thus, although, as noted before, the front propagates then at infinite velocity, 
it carries no change of state. The energy is evidently dissipated then in the form of a 
pure radiation wave without involving any mass motion. 

The characteristic features exhibited by space profiles as this limit is approached 
are as follows: 

For E, < E < j + 1 (orp ,  < ,u < I ) ,  as represented by figure 6, particle velocities tend 
to infinity behind the front before falling down to zero at the centre, temperatures 
attain there infinity, densities get down to zero, while the pressure level increases 
towards infinity. 

For E: = j + 1 (or p = 1))  as shown in figure 7, there is always a core of zero velocity 
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FIQURE 5 .  Profiles of ggsdsdynamic parameters for the unique solutions of figure 2 corresponding 
t o  -3.871 s E < 1.6 or 0.3226 < p < 0.72. (a) Particle velocity; ( b )  temperature; (c) density; 
(d)  pressure. Values of ( E ,  p )  are: (1). (1.6, 0.72); (Z) ,  (1.0, 0.6); (3), (0.5, 0.5); (4), (0, 0.4); 
( 5 ) ,  (-0.15, 0.37); (6), (-0.3,  0.34); (7), (-0.3871, 0.3226). 

around the centre, where all the other parameters have to  be maintained, of course, 
a t  a uniform level. The front of this core is attained when the relative particle velocity 
with respect to the locus of x = const. becomes equal to the local velocity of sound. 
As w falls down to zero the uniform level of all the parameters of state around the 
centre increases towards unity, so that the state of the medium approaches an 
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FIGURE 6(a ,  b ) .  For legend see facing page. 

undisturbed condition throughout the flow field, causing, in particular, the temperature, 
density and pressure profiles to look more arid more alike. 

As illustrated by figures 8 and 9, space profiles of gasdynamic parameters for 
e > j+ 1 (or p > I ) ,  exhibit a radically different behaviour than those for E < j +  1 
(or ,u < 1). Here particle velocities are negative in the core around the centre, tem- 
peratures tend to zero, densities approach infinity, while the pressure level a t  the 
centxe falls down to zero as w gets closer to its limiting value of w = 0. As pointed out 
before, the flow fields of figures 8 and 9 contain an internal discontinuity. Its position 
is indicated on each profile by a short vertical line. The significance of figure 9 lies in 
the fact that it represents the limiting condition of e = ,u = co. It is of interest to 
observe here how the velocity tends to the plateau of u = 0 throughout the flow field as w 
gets down to zero. This is associated with density ratio approaching the Ievel of unity, 
causing the pressure profile to become more and more similar to that of temperature. 

Figure 10 presents the salient parameters of the problem expressed as a function 
of F;, used as the abscissa in order to accommodate most conveniently the full scope 
of solutions. The parameters are: the reduced co-ordinate of the front, Fn, determined 
by the intersection of the integral curve with the line of P, = 00, and the non- 
dimensional energy integral, J ,  evaluated by the use of (35). As indicated a t  the top, 
vertical lines correspond to  the same values ofe and ,u as those of figures 2, 3 and 5-9. 
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FIGURE 6. Profiles of gasdynamic parameters for the non-unique solutions of figure 3 corres- 
ponding to e = 2.3 or ,LA = 0.86. (a) Particle velocity; (b )  temperature; ( c )  density; ( d )  pressure. 
Values of (F,,, w )  are: (I), (0.01, 0.0247); ( 2 ) ,  (0.1, 0.22); (3), (0.2, 0.38); (4), (0.3, 0.48); (5), 
(0.4167, 0.5208). 

The parameter 3; is, of course, constant for all the members of different families of 
non-unique solntions whose integral curves terminate a t  the same point on the line of 
P, = 00. They are represented on figure 10 by horizontal lines. The corresponding 
energy integrals are displayed by curves, as indicated by zig-zag lines with arrows. 
They all tend to infinity as E and p approach their limiting level oft: = p = 00. 

With the values of F, and E depicted in figure 10, one can calculate J by the use of 
(32). The results of this computation were in such good agreement with those shown 
in figure 10 that the difference between them could not have been demonstrated there 
pictorially. This completes the check of the accuracy of our results. 

4. Conclusions 
A parametric study of self-similar solutions for point explosions of variable energy 

has been presented. The scope of the coverage is bound by two conditions of infinity, 
on one side that in the rate of energy deposition and, on the other, by that in the density 
ratio across the front. Within this regime, blast waves associated with both energy 
gain and loss are included, the solution for adiabatic strong explosion providing the 
line of demarcation between the two. 

0 
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FIQURE 7.  Profiles of gasdynamic parameters for the non-unique solutions of figure 3 corres- 
ponding to E = 3 or y = 1. (a) Particle velocity; ( b )  temperature; (c) density; ( d )  pressure. 
Values of (Fn, w )  are as in figure 6. 

The primary parameter of the study is the wave-power index, 6,  indicating the rate 
of energy deposition - a quantity related linearly to the front-velocity index, p ,  des- 
cribing the curvature of the front trajectory in the time-space domain. Starting with 
the value of E corresponding to the lowest rate of energy gain compatible with the 
Chapman-Jouguet condition established immediately behind the front, solutions are 
no more uniquely dependent on this parameter. For the same value of E (and p )  one can 
have a set of solutions corresponding to either sonic or supersonic flow immediately 
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FIGURE 8. Profiles of gasdynamic parameters for the non-unique solutions of figure 3 corres- 
ponding to E = 8 or p = 2. (a) Particle velocity; ( b )  temperature: (c) density; ( d )  pressure. 
Values of (Pm, W) are as in figure 6. 

behind the front. This is followed by a regime of locally supersonic flow. While the 
transition to subsonic flow is smooth for 6 < j + 1 (or ,u < I) ,  that is in blast waves with 
decelerating fronts, it is in principle discontinuous for e > j + I (p > I), that is in 
blast waves with accelerating fronts. For c = j + 1 (or ,u = I), that is in blast waves 
with constant velocity fronts, the flow is locally supersonic except for a central core of 
uniform state at rest which is established when the flow becomes locally sonic. 
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Figure 9. Profiles of gasdynamic parameters for the non-unique solutions of figure 3 corres- 
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